Group $L_{1/2}$ Regularization for Pruning Hidden Layer Nodes of Feedforward Neural Networks
نویسندگان
چکیده
منابع مشابه
A new feedforward neural network hidden layer neuron pruning algorithm
This paper deals with a new approach to detect the structure (i.e. determination of the number of hidden units) of a feedforward neural network (FNN). This approach is based on the principle that any FNN could be represented by a Volterra series such as a nonlinear inputoutput model. The new proposed algorithm is based on the following three steps: first, we develop the nonlinear activation fun...
متن کاملClassification ability of single hidden layer feedforward neural networks
Multilayer perceptrons with hard-limiting (signum) activation functions can form complex decision regions. It is well known that a three-layer perceptron (two hidden layers) can form arbitrary disjoint decision regions and a two-layer perceptron (one hidden layer) can form single convex decision regions. This paper further proves that single hidden layer feedforward neural networks (SLFN's) wit...
متن کاملRegularization parameter estimation for feedforward neural networks
Under the framework of the Kullback-Leibler (KL) distance, we show that a particular case of Gaussian probability function for feedforward neural networks (NNs) reduces into the first-order Tikhonov regularizer. The smooth parameter in kernel density estimation plays the role of regularization parameter. Under some approximations, an estimation formula is derived for estimating regularization p...
متن کاملA Penalty-Function Approach for Pruning Feedforward Neural Networks
This article proposes the use of a penalty function for pruning feedforward neural network by weight elimination. The penalty function proposed consists of two terms. The first term is to discourage the use of unnecessary connections, and the second term is to prevent the weights of the connections from taking excessively large values. Simple criteria for eliminating weights from the network ar...
متن کاملAn iterative pruning algorithm for feedforward neural networks
The problem of determining the proper size of an artificial neural network is recognized to be crucial, especially for its practical implications in such important issues as learning and generalization. One popular approach for tackling this problem is commonly known as pruning and it consists of training a larger than necessary network and then removing unnecessary weights/nodes. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2018.2890740